Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Georgina M. Rosair,* Falk H. Schmidt and Alan J. Welch

Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

Correspondence e-mail: g.m.rosair@hw.ac.uk

Key indicators

Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
H -atom completeness 98\%
Disorder in main residue
R factor $=0.087$
$w R$ factor $=0.181$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraphenylphosphonium 7-phenylethynyl-8-phenyl-7,8-nido-dicarbadecahydroundecaborate(1-)

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}^{+} \cdot \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~B}_{9}{ }^{-}$, the presence of the C_{2} spacer of the phenylethynyl group reduces the intramolecular crowding between the two phenyl groups of the carborane-cage anion. The position of the B atom connected to both cage C atoms is disordered.

Comment

nido-Disubstituted carboranes have been synthesized with a variety of counter-ions to establish a pattern of inter- and intramolecular interactions. In the $\left[\mathrm{HNEt}_{3}\right]^{+},\left[\mathrm{Me}_{3} \mathrm{NCH}_{2} \mathrm{Ph}\right]^{+}$ (Cowie et al., 1993) and $\left[\mathrm{Rh}(\mathrm{dppe})_{2}\right]^{+}$(Donohoe et al., 2001) salts of $\left[7,8-\mathrm{Ph}_{2}-7,8 \text {-nido- } \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]^{-}$, the phenyl substituents lie roughly orthogonal to the open $\mathrm{C}_{2} \mathrm{~B}_{3}$ face of the cage. This conformation is quantified by the angle θ defined as the modulus of the average $\mathrm{C}_{\text {cage }}-\mathrm{C}_{\mathrm{cage}}-\mathrm{C}_{\mathrm{Ph}}-\mathrm{C}_{\mathrm{Ph}}$ torsion angle (Cowie et al., 1994). In the $\left[\mathrm{HNEt}_{3}\right]^{+}$and $\left[\mathrm{Rh}(\mathrm{dppe})_{2}\right]^{+}$salts, the phenyl-ring conformations are described by θ values of $5.6(5), 10.0(6)$ and $14.6(5), 20.6(6)^{\circ}$, respectively. Low θ values in this anion are necessary to avoid phenyl. . phenyl crowding. However, in the title compound, (I) (two crystallographically independent molecules, data for primed molecule in square brackets; Figs. 1 and 2), whilst the cage-bound phenyl group has a relatively low θ value of $15.8(7)^{\circ}$ [15.1 (7) ${ }^{\circ}$], the phenyl group of the phenylethynyl substituent subtends a θ value of $57.6(7)^{\circ}$ [52.2 (7) ${ }^{\circ}$. Evidently, the presence of the C_{2} spacer between C 7 and the $\mathrm{C} 73-\mathrm{C} 78$ ring reduces the intramolecular crowding between the two phenyl groups of any one anion and allows the resultant conformations.

(I)

In (I) the two crystallographically independent cages are disordered in that the $\mathrm{B} 3, \mathrm{~B} 12, \mathrm{~B}^{\prime}$ and $\mathrm{B}^{\prime} 2^{\prime}$ positions are partially occupied (60, 40, 70 and 30%, respectively, based on $U_{\text {iso }}$ values). Such positional disorder may be fostered by the approximately spherical shape of the $\left[\mathrm{PPh}_{4}\right]^{+}$cation.

Received 3 October 2001
Accepted 8 November 2001
Online 17 November 2001

Figure 1
The molecular structure of cage A of (I) showing 50% probability displacement ellipsoids.

Experimental

A 5 ml solution of $\mathrm{PPh}_{4} \mathrm{Br}(60.12 \mathrm{mg}, 143.38 \mu \mathrm{~mol})$ in water was added slowly to $\mathrm{K}\left[7-\mathrm{CCPh}-8-\mathrm{Ph}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right.$] ($50 \mathrm{mg}, 143.38 \mu \mathrm{~mol}$) dissolved in 10 ml water, producing a white precipitate. After filtration and washing with water, the white solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over MgSO_{4}. Recrystallization from 333-353 K light petroleum $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $48.8 \mathrm{mg}(51.6 \%)$ of (I) as colourless crystals. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ FT-NMR data for $(\mathrm{I}):\left(128.4 \mathrm{MHz}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right.$ in $\left.\mathrm{CDCl}_{3}\right)$: 8/p.p.m. $=-32.5(1 \mathrm{~B}),-30.0(1 \mathrm{~B}),-17.4(1 \mathrm{~B}),-16.4(1 \mathrm{~B}),-14.4$ (1B), $-13.5(1 \mathrm{~B}),-8.6(1 \mathrm{~B}),-4.8(2 \mathrm{~B})$. NMR spectra were recorded on a Bruker DPX400 spectrometer at 293 K .

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}^{+} \cdot \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~B}_{9}{ }^{-}$
$M_{r}=648.98$
Triclinic, $P \overline{1}$
$a=10.063(2) \AA$
$b=19.007(4) \AA$
$c=20.344(4) \AA$
$\alpha=71.469(14)^{\circ}$
$\beta=83.522(16)^{\circ}$
$\gamma=84.235(16)^{\circ}$
$V=3657.1(13) \AA^{\circ}$

Data collection

Bruker P4 diffractometer
ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.925, T_{\text {max }}=0.990$
14197 measured reflections 11336 independent reflections 4545 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.087$
$w R\left(F^{2}\right)=0.181$
$S=0.97$
11336 reflections
764 parameters
$Z=4$
$D_{x}=1.179 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 37
reflections
$\theta=2.2-10.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Plate, colourless
$0.90 \times 0.30 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.092 \\
& \theta_{\max }=24.9^{\circ} \\
& h=-1 \rightarrow 11 \\
& k=-21 \rightarrow 20 \\
& l=-23 \rightarrow 23 \\
& 3 \text { standard reflections } \\
& \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0505 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{\AA^{-3}}$

Figure 2
The molecular structure of cage B of (I) showing 50% probability displacement ellipsoids.

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

B1-B2	1.769 (11)	B1 ${ }^{\prime}-\mathrm{B} 2^{\prime}$	1.762 (11)
B1-B3	1.655 (13)	$\mathrm{B} 1^{\prime}-\mathrm{B} 3^{\prime}$	1.701 (11)
B1-B4	1.771 (11)	B1 ${ }^{\prime}-\mathrm{B} 4^{\prime}$	1.753 (10)
B1-B5	1.776 (11)	$\mathrm{B} 1^{\prime}-\mathrm{B} 5^{\prime}$	1.761 (10)
B1-B6	1.802 (12)	B1 ${ }^{\prime}-\mathrm{B} 6^{\prime}$	1.784 (11)
B2-B3	1.663 (14)	$\mathrm{B} 2^{\prime}-\mathrm{B} 3^{\prime}$	1.681 (12)
B2-B6	1.750 (11)	B2 ${ }^{\prime}-\mathrm{B}^{\prime}{ }^{\prime}$	1.764 (10)
B2-C7	1.681 (9)	$\mathrm{B} 2^{\prime}-\mathrm{C} 7^{\prime}$	1.687 (9)
B2-B11	1.799 (11)	$\mathrm{B}^{\prime}{ }^{\prime}-\mathrm{B} 11^{\prime}$	1.773 (11)
B3-B4	1.707 (13)	$\mathrm{B} 3^{\prime}-\mathrm{B} 4^{\prime}$	1.729 (11)
B3-C7	1.713 (13)	B3 ${ }^{\prime}-\mathrm{C} 7^{\prime}$	1.697 (11)
B3-C8	1.750 (13)	$\mathrm{B}^{\prime}-\mathrm{C}^{\prime}$	1.754 (10)
B4-B5	1.743 (11)	B4 ${ }^{\prime}-\mathrm{B}^{\prime}$	1.757 (10)
B4-C8	1.685 (9)	$\mathrm{B} 4^{\prime}-\mathrm{C} 8^{\prime}$	1.695 (8)
B4-B9	1.777 (10)	B4 ${ }^{\prime}-\mathrm{B} 9^{\prime}$	1.802 (9)
B5-B6	1.805 (10)	$\mathrm{B} 5^{\prime}-\mathrm{B} 6^{\prime}$	1.791 (10)
B5-B9	1.742 (10)	$\mathrm{B} 5^{\prime}-\mathrm{B} 9^{\prime}$	1.752 (9)
B5-B10	1.795 (10)	$\mathrm{B5}^{\prime}-\mathrm{B} 10^{\prime}$	1.783 (10)
B6-B10	1.756 (11)	B6 ${ }^{\prime}-\mathrm{B} 10^{\prime}$	1.751 (11)
B6-B11	1.729 (10)	B6 ${ }^{\prime}-\mathrm{B} 11^{\prime}$	1.754 (10)
C7-C8	1.600 (7)	$\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$	1.582 (7)
C7-B11	1.659 (8)	$\mathrm{C} 7^{\prime}-\mathrm{B} 11^{\prime}$	1.652 (8)
C7-B12	1.721 (18)	$\mathrm{C} 7^{\prime}-\mathrm{B} 12^{\prime}$	1.610 (6)
C8-B9	1.651 (8)	$\mathrm{C} 8^{\prime}-\mathrm{B} 9^{\prime}$	1.644 (8)
C8-B12	1.76 (2)	C8 ${ }^{\prime}-\mathrm{B} 12^{\prime}$	1.784 (6)
B9-B10	1.787 (10)	B9' ${ }^{\prime}$ - 10 $^{\prime}$	1.802 (9)
B9-B12	1.732 (18)	B9' $-\mathrm{B} 12^{\prime}$	1.831 (7)
B10-B11	1.812 (10)	B10'-B11 ${ }^{\prime}$	1.822 (9)
B10-B12	1.655 (19)	B10'-B12 ${ }^{\prime}$	1.609 (8)
B11-B12	1.638 (18)	B11 - B12 ${ }^{\prime}$	1.449 (8)
C7-C8-C81-C82	74.7 (7)	$\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 81^{\prime}-\mathrm{C} 82^{\prime}$	-106.5 (6)
C7-C8-C81-C86	-106.0 (6)	$\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 81^{\prime}-\mathrm{C} 86^{\prime}$	76.2 (7)

The exo-cage H atoms were constrained to idealized positions (B-H $1.12 \AA$) as were the phenyl H atoms ($\mathrm{C}-\mathrm{H} 0.95 \AA$). The endocage H atoms were not found in the difference map and not introduced, since their positions were masked by the disordered boron atoms B12 and B12'. The displacement parameter for B12' was refined isotropically to avoid a non-positive definite value. The $U_{\text {iso }}$ parameters of the H atoms were defined as $1.2 U_{\text {iso }}$ of the parent atoms. The phenyl rings were constrained to idealized hexagons

organic papers

($\mathrm{C}-\mathrm{C} 1.390 \AA$ and $\mathrm{C}-\mathrm{C}-\mathrm{C} 120^{\circ}$) in the $\left[\mathrm{PPh}_{4}\right]^{+}$cation and the cage-bound phenyl groups.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

FHS is a recipient of an ERASMUS exchange scholarship from the Philipps University, Marburg.

References

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Cowie, J., Donohoe, D. J., Douek, N. L. \& Welch, A. J. (1993). Acta Cryst. C49, 710-714.
Cowie, J,. Reid, B. D, Watmough, J. M. S. \& Welch, A. J. (1994). J. Organomet. Chem. 481, 283-293.
Donohoe, D. J., Rosair, G. M. \& Welch, A. J. (2001). In preparation.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

